A Quest for the Ideal Solution in engineering design. Five challenges of BTIPS.

Friday, October 23 • 2:30 PM – UTEB, Rm. 175

A Quest for the Ideal Solution in engineering design. Five challenges of BTIPS.

Dr. Zbigniew M. Bzymek, University of Connecticut, Mechanical Engineering

Abstract: The nature of engineering is problem solving. The process starts with the problem definition and is followed by the search of a solution that satisfies the most requirements. Such a solution is an End Solution of the process and it changes into an Ideal Solution which determines the success of the design. So the starting point of the design process is the conceptual solution. Finding the right conceptual solution determines the success of the product. If the concept is not right, even the most sophisticated geometry and the most precise analyses will not lead to a successful product. Evident concepts are not hard to find. The real challenge occurs when engineers have to solve the problem with conflicting constraints that are described by antonyms as for example: “is there and is not there”, “close and far”, “hard and soft” and so on. BTIPS – a Brief Theory of Inventive Problem Solving is a method of conceptual design that is helpful in solving such conflicting constraints. BTIPS originated from Altshuller’s TRIZ1 and Invention Machine TIPS2 . It was developed from these two methods at the University Connecticut by introducing abbreviations, changes and additions based on the newest theoretical and practical achievements of Science and Technology. BTIPS was developed mainly for teaching but it is powerful enough to be applied in engineering practice. BTIPS, similar to IM TIPS, contains three modules: Principles, Effects and Prediction. During the research at UConn three were new principles were added to the PRINCIPLES module, several effects to the EFFECTS module and virtual elements to the PREDICTION module. In the solution process algorithm improvements of the sequence of modules was introduced. To confirm the Ideal Solution two tests of the End Solution were established. Five challenges were also added. as the introduction to BTIPS. The five challenges are: “Solve Impossible”,” Isolate Properly”, “Choose the Right Solution Tool”:”Separate Functions” and “Point the Ideal Solution”. Overcoming all five challenges would allow the designer to accomplish the Quest for the Ideal Solution. TRIZ1 – /ˈtriːz/; Russian: теория решения изобретательских задач, teoriya resheniya izobretatelskikh zadach, literally: “theory of solving of inventive problems”); TIPS2 – Theory of Inventive Problem Solving.

Biographical Sketch: Zbigniew M. Bzymek, Ph.D., Associate Professor of Mechanical Engineering at UConn is a contributor to Design Theory, Designer and Constructor of Structures, Researcher and Educator of Engineers. He has received PhD in 1968, M.Sc. from Warsaw University of Technology in 1959 and M.Sc. from University of Michigan, Ann Arbor, Michigan in 1961. As a result of extensive research in Poland he put together several packages of computer programs for stress and deflection analysis of structures. He has published the first book in Polish on computer analysis of structures (translated to Hungarian), which also was one of the first in Eastern Europe. He has delivered over 50 invited lectures and seminars on the design and CAD of structures at universities, at computational centers as well as in design and consulting offices in Poland, Hungary, Czechoslovakia, Soviet Union, Germany, UK, US, China, Australia, Dubai, Mexico and Canada. He modernized the CAD and Manufacturing Automation courses taught at UConn and developed a CAD &CAM Laboratory – one of the most unique and significant on the East coast. For contribution to computer multicolor, multi-thickness line drawing he was awarded the title of Computer Graphics Pioneer in the United States. He has contributed to the conceptual design by introducing several principles. Together with his students he has received several recognitions and industrial design awards as well as the Second National ASME Design Award. He has published over 150 articles, conference papers, books and chapters. His conference papers were presented in the US, Canada, Japan, Australia, Mexico, New Britain, Poland and other European countries. He is an Associate Member of Engineering Committee of the Polish Academy of Science and Member of the New York Academy of Science. He has been awarded an ASME medal and is an ASME Fellow.

For additional information, please contact Prof. Xinyu Zhao at (860) 486-0241, xinyuz@engr.uconn.edu or Laurie Hockla at (860) 486-2189, hockla@engr.uconn.edu

 

Published: October 23, 2015

Categories: Events and Seminars, Seminars

Available Archives