Yearly Archives: 2018

Prof. Zhao’s new DoD Grant Aims to Better Understand Aeronautical Combustion

  Via UConn Today:  

Keywords:

read more

Strain Improves Performance of Atomically Thin Semiconductor Material

Dr. Michael Pettes and his graduate student Wei Wu have significantly improved the performance of an atomically thin semiconductor material by stretching it, an accomplishment that could prove beneficial to engineers designing the next generation of flexible electronics, nano devices, and optical sensors. The findings mark the first time scientists have been able to conclusively show […]

Keywords:

read more

Profs. Chen and Norato win coveted 2018 NSF CAREER awards for their work on Additive Manufacturing and Topology Optimization

Two ME professors received the 2018 National Science Foundation’s CAREER award, which is the Foundation’s most prestigious award in support of early-career faculty. Prof. Xu Chen’s award will support his research on thermal modeling, sensing, and controls to enable new generations of powder bed fusion (PBF) additive manufacturing. In contrast to conventional machining, where parts […]

Keywords:

read more

Far-Field and Near-Field Thermal Radiation with Nanostructures and 2D Materials

Abstract: Radiative heat transfer between closely spaced objects can be greatly enhanced at nanoscale separation. Furthermore, the interaction of electromagnetic waves with micro/nanostructured materials can potentially modify their far-field radiative properties. Recent advances in graphene and other two-dimensional (2D) materials offer enormous potential to transform current microelectronic, optoelectronic, photonic devices, as well as energy systems. […]

Keywords:

read more

Tumor Growth Biomechanics

Abstract: Cancer is a disease whereby multiple genetic mutations confer upon cancer cells the ability to endlessly proliferate, evade death, and activate their environment. In every stage of solid tumor development— from tumor initiation to metastasis—abnormally stiff tissue and increased mechanical stresses have been implicated. Increased stiffness of the tumor environment is, in general, a […]

Keywords:

read more

Recent Advances in Premixed Turbulent Combustion: Research and its Relevance to Aerospace Propulsion

Abstract: Gas turbines for propulsion and for stationary power generation typically burn fuel in a “partially-premixed” mode. The portions of the flames that are premixed may not anchor properly and may lead to combustion instability oscillations, liftoff, flameout and excessive heat transfer. This talk will survey recent advances in premixed turbulent combustion research in the […]

Keywords:

read more

An Interdisciplinary View of Interfaces: Perspectives Regarding Emergent Phase Formation

Abstract: The emergent properties arising from the interactions of phases including interfacial contributions (surfaces) and phase evolution at the mesoscale present new opportunities, as well as challenges, for materials performance and functionality. This presentation will highlight interfacial contributions to system level performance in diverse fields: i) mixed ionic and electronic conducting (MIEC) materials in membranes […]

Keywords:

read more

Functional Magnetic Nanomaterials: What does the future hold?

Abstract: Functional magnetic nanomaterials, whose properties are fundamentally different from their bulk counterparts, have attracted a global interest owing to their prospective applications in advanced spintronics and nanomedicine. In this lecture, I will discuss fundamental aspects of nanomagnetism, properties of magnetic materials upon size reduction to the nanoscale, and recent advances in synthesis, characterization and […]

Keywords:

read more

New DoE Funded Advanced Manufacturing Program to Educate a New Generation of Engineering Leaders

The new grant funded by the US Department of Energy supports new graduate programs in Mechanical Engineering to train the next generation of advanced manufacturing leaders. The UConn effort has been led by Prof. Ugur Pasaogullari. More details can be found on the School of Engineering website.  

Keywords:

read more

Multiscale Atomistics for Defects in Electronic Materials

Abstract: Ionic solids are important for electronic and energy storage/conversion devices. Examples include ferroelectrics and solid oxides. Defects in these materials play a central role in enabling their properties: for example, the electromechanics of ferroelectrics occurs by the nucleation and growth of domain wall defects, and solid oxide ionic conduction is through the motion of […]

Keywords:

read more

Microstructure-induced Capillary Forces and their Role in Bone Regeneration

Abstract: More than 1.5 million people undergo bone graft procedures annually in the US to repair bone defects that will not heal spontaneously. These defects severely decrease the quality of life and are an economic burden to those affected and to the health care system. The already considerable demand for treatment is growing rapidly as […]

Keywords:

read more

Design and Scalable Synthesis of Nanoscale Materials for Solar Energy Conversion

Abstract: My research is aimed at creating materials that will be the building blocks of economical, large-scale, clean energy technologies of the future. The key to creating effective energy conversion materials is controlling the flow of energy, matter and electricity at the nanoscale by careful design of the shape, size and composition of materials at […]

Keywords:

read more

Biodegradable Sensor Monitors Pressure in the Body then Disappears

More details about the research being developed in Prof. Thanh Nguyen’s research group can be found in UConn Today.

Keywords:

read more

Mechanics at the Mesoscale: Testing, Modeling, and Re-Engineering Living Soft Matter

Abstract: Research in the Simmons Lab works to understand the feedback loop between cell-level processes and tissue-level mechanics. We have developed our own characterization equipment to effectively compare excised tissues, synthetic hydrogels, and engineered constructs. With our custom tools and models, we are studying a novel animal, the African Spiny Mouse, that is capable of […]

Keywords:

read more

Power-to-Gas and Hydrogen Energy Storage for a 100% Renewable Future

Abstract: Renewable, ultra-low emissions and high efficiency energy conversion systems will be required to introduce energy resource and environmental sustainability. In particular the dynamic dispatch, massive energy storage capacity, and ubiquitous transmission and distribution of energy that the power-to-gas and hydrogen energy storage concepts provide will become essential to enable a 100% renewable economy.  In […]

Keywords:

read more

Available Archives